Your Country: ?
Your Currency: ?
CONTACT US
USA: 877 271 6591
UK: 0808 234 7254
Outside UK/USA: 1 877 271 6591
Your Country: ?
Your Currency: ?
Login | SHOPPING CART    (0 items)
USA: 877 271 6591
UK: 0808 234 7254
Outside UK/USA: 1 877 271 6591
Your Country: ?
Your Currency: ?
Login | SHOPPING CART    (0 items)
FREE SHIPPING TO UNITED STATES
Epilepsy
Our Epilepsy class of Neurological medications contain anticonvulsants that are used to treat epilepsy to control and prevent seizures, by acting directly on the nervous system.

Use the search feature to quickly find the product you are looking for, by entering either the active ingredient, e.g. phenytoin, or the product name, e.g. Dilantin.

...Read more
Our Epilepsy class of Neurological medications contain anticonvulsants that are used to treat epilepsy to control and prevent seizures, by acting directly on the nervous system.

Use the search feature to quickly find the product you are looking for, by entering either the active ingredient, e.g. phenytoin, or the product name, e.g. Dilantin.

...Read more

APO-Gabapentin 100mg
APO-Gabapentin 100mg

Gabapentin
Also known as Neurontin
From $0.21 per Capsule
APO-Gabapentin 300mg
APO-Gabapentin 300mg

Gabapentin
Also known as Neurontin
From $0.40 per Capsule
APO-Gabapentin 400mg
APO-Gabapentin 400mg

Gabapentin
Also known as Neurontin
From $0.52 per Capsule
Depakote 250 (Divalproex 250mg)
Depakote 250 (Divalproex 250mg)
On Sale
Divalproex 250mg
From $0.50 per Tablet
Depakote 500 (Divalproex 500mg)
Depakote 500 (Divalproex 500mg)
Divalproex 250mg
From $1.28 per Tablet
Diamox 250mg (Acetazolamide)
Diamox 250mg (Acetazolamide)
Acetazolamide
From $0.45 per Tablet
Dilantin 30mg
Dilantin 30mg
Phenytoin
From $0.21 per Capsule
Dilantin 100mg
Dilantin 100mg
Phenytoin
Out Of Stock
Epilim EC 500mg
Epilim EC 500mg
Sodium Valproate
Sodium Valproate
From $0.93 per Tablet
Lametec-25 DT (Lamotrigine Dispersible 25mg)
Lametec-25 DT (Lamotrigine Dispersible 25mg)

Lamotrigine
Also known as Lamictal
From $0.52 per Tablet
Lametec-100 DT (Lamotrigine Dispersible 100mg)
Lametec-100 DT (Lamotrigine Dispersible 100mg)
On Sale

Lamotrigine
Also known as Lamictal
From $0.70 per Tablet
Lametec-50 DT (Lamotrigine Dispersible 50mg)
Lametec-50 DT (Lamotrigine Dispersible 50mg)

Lamotrigine
Also known as Lamictal
From $0.70 per Tablet
Topiramate 25mg Actavis
Topiramate 25mg Actavis

Topiramate
From $0.68 per Tablet
Levepsy (Levetiracetam 500mg) Tablets
Levepsy (Levetiracetam 500mg) Tablets

Levetiracetam
Also known as Keppra
From $0.75 per Tablet
Everet 250mg (Levetiracetam)
Everet 250mg (Levetiracetam)

Levetiracetam
From $0.95 per Tablet
Topiramate 100mg
Topiramate 100mg

Topiramate
From $1.50 per Tablet
Levepsy (Levetiracetam 1000mg)
Levepsy (Levetiracetam 1000mg)

Levetiracetam
Also known as Keppra
From $1.10 per Tablet
Neurontin  (Gabapentin) 100mg
Neurontin (Gabapentin) 100mg
Gabapentin
From $0.27 per Tablet
Neurontin  (Gabapentin) 300mg
Neurontin (Gabapentin) 300mg
Gabapentin
From $0.51 per Capsule
Neurontin  (Gabapentin) 400mg
Neurontin (Gabapentin) 400mg
Gabapentin
From $0.80 per Capsule
Tegretol 200mg 100 Tabs
Tegretol 200mg 100 Tabs
On Sale
Carbamazepine
From $0.17 per Tablet
Tegretol 400mg
Tegretol 400mg
On Sale
Carbamazepine
From $0.36 per Tablet
Tegretol CR 200mg
Tegretol CR 200mg
Carbamazepine
From $0.35 per Tablet
Tegretol CR 400mg
Tegretol CR 400mg
Carbamazepine
From $0.78 per Tablet
Tegrital (Carbamazepine 200mg)
Tegrital (Carbamazepine 200mg)
Carbamazepine
Also known as Tegretol (and made by same manufacturer)
Discontinued
Tegrital (Carbamazepine 400mg)
Tegrital (Carbamazepine 400mg)
Carbamazepine
Also known as Tegretol (and made by same manufacturer)
From $0.48 per Tablet
Tegrital CR (Carbamazepine 200mg)
Tegrital CR (Carbamazepine 200mg)
Carbamazepine
Also known as Tegretol (and made by same manufacturer)
From $0.25 per Tablet
Tegrital CR (Carbamazepine 400mg)
Tegrital CR (Carbamazepine 400mg)
Carbamazepine
Also known as Tegretol (and made by same manufacturer)
From $0.56 per Tablet
Topamax 50mg  (Topiramate)
Topamax 50mg (Topiramate)
Topiramate
From $1.77 per Tablet
Topiramate 50mg Actavis
Topiramate 50mg Actavis

Topiramate
From $1.17 per Tablet

Transmission of nerve impulses

Messages are transmitted from one neurone (nerve cell) to another by the generation of electrical and chemical signals. At one end of the neurone, structures called dendrites pick up the stimulus from the connecting neurone and this generates an electrical signal that travels down the body of the cell called the axon and stimulates the release of chemical signals or neurotransmitters from the other end. These neurotransmitters travel across the gap or synapse between the axon terminal of one neurone (pre-synaptic) and the dendrites at the top of the next neurone (post-synaptic). They bind to specific receptors and trigger the generation of another electrical signal in the next neurone. This transmission of electrical and chemical messages takes just milliseconds to complete.

An electrical signal is generated by the exchange of charged particles or ions across voltage-dependant ion channels in the cell membrane controlled by ion pumps. When a neurone is not transmitting messages it is resting and its membrane is polarised which means that the electrical charge on the outside of the membrane is positive due to an excess of sodium ions, while the charge on the inside is negative and there is an excess of potassium ions.

When the neurone is stimulated, the gated channels on the membrane open and sodium ions flood into the cell and the membrane becomes depolarised generating an action potential and an electrical signal is propagated along the axon. The ions return to their original levels and the cell becomes repolarised, ready to receive another signal.

At the other end of the neurone, the electrical signal triggers the membrane to depolarise allowing calcium ions to enter the cell and this stimulates the release of neurotransmitters. Some neurotransmitters trigger an action potential in the next neurone and are is stimulatory, others are inhibitory and prevent the generation of an action potential.
Once it has done its job the neurotransmitter is degraded or reabsorbed back into the pre-synaptic neurone that released it, so that the stimulus stops once transmission to the next neurone is complete.

What is epilepsy?

Epilepsy is characterised by recurring spontaneous seizures, which is uncontrolled muscular spasm, due to episodes of abnormal electrical activity in the brain. A chemical imbalance of neurotransmitters in the brain results in a malfunction in the transmission of electrical signals and causes repetitive firing and transmission of excitatory nerve messages. These bursts of abnormal electrical activity in the brain send nerve signals to the motor neurones in the central nervous system and trigger seizures. Epileptic seizures vary from mild convulsions to violent muscle spasms with loss of consciousness, depending on the part of the brain affected. The trigger for epileptic seizures can be due to anything that disturbs normal activity of neurones, including head injury, stroke, brain tumour, brain infection, drug abuse, but in many cases the cause is unknown (idiopathic) and epilepsy can start at any age.

Medications for epilepsy

Drugs used to prevent epileptic seizures are anticonvulsants that control the bursts of electrical activity in the brain that cause seizures. They work by preventing the repetitive firing of nerve messages acting through different mechanisms, including:
  • Blocking sodium channels that are involved in triggering the action potential and setting up the nerve signal
  • Blocking calcium channels that respond to the nerve signal and trigger the release of neurotransmitters
  • Adjusting the balance between inhibitory and excitatory neurotransmitters
Some medications work by more that one mechanism and act by a combination of these mechanisms.

Sodium/calcium channel blockers

Some anticonvulsants control neurotransmission and act directly on nerve cells to stabilise nerve cell membranes by blocking sodium or calcium channels. This reduces electrical activity and helps to “calm down” nerves that have become hyperexcited, thereby inhibiting the repetitive firing and transmission of excitatory nerve messages, in areas of the brain where hyperactivity causes seizures. Medications that act as membrane stabilisers include the following:
  • Carbamazepine blocks voltage-dependent sodium channels in nerve cell membranes that control the flow of sodium ions into the nerve cell and triggers an electrical transmission, which in hyperexcited nerve cells can trigger a seizure. This action is also thought to suppress the release of the neurotransmitters dopamine and noradrenaline.

  • Phenytoin acts directly on a specific area in the brain called the motor cortex, which controls movement and works by promoting the release of sodium ions out of the nerve cell through voltage-gated sodium channels in the membrane. This prevents the spread of electrical activity that sends nerve signals from the brain to the central nervous system to trigger a seizure.

  • Topiramate blocks sodium channels and thereby reduces the neurone’s ability to send out continuous signals which cause seizures.

  • Gabapentin is an analogue of Gamma aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the brain and is thought to control neurotransmission via voltage-gated calcium channels.

  • Sodium valproate acts as a nerve cell membrane stabiliser by blocking voltage-dependent sodium channels.

Inhibitory and excitatory neurotransmitters

For the brain to function normally it is important to have a balance between excitatory and inhibitory neurotransmitters. Glutamate is the major excitatory neurotransmitter and interacts with receptors that have excitatory effects, which means that they increase the probability that the target cell will set up an action potential and trigger a nerve signal. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter and interacts with receptors that have inhibitory effects by failing to trigger a nerve signal and this has a calming effect on nerve cells. Medications that regulate the balance between excitatory and inhibitory neurotransmitters include the following:
  • Sodium valproate increases the activity of the inhibitory neurotransmitter GABA. It works by inhibiting GABA degradative enzymes like GABA transaminase and/or succinic semialdehyde dehydrogenase thereby preventing its degradation; also by preventing the reuptake of GABA by the pre-synaptic nerve cell.

  • Topiramate stimulates the activity of GABA by enhancing the frequency that it activates its receptor; also by enhancing the ability of GABA to increase the flow of calcium ions into the end of the nerve cell that stimulates release of neurotransmitters. Topiramate also inhibits the activity of the excitatory neurotransmitter glutamate, which adds to the calming effect on brain electrical activity.

  • Gabapentin is an analogue of the inhibitory neurotransmitter GABA but does not work through the same receptors as GABA. It does however, bind to a receptor in brain neurones and is thought to control neurotransmission by blocking voltage-gated calcium channels, which reduces the propagation of excitatory nerve transmissions and calms excitatory nerve cells.

Bicarbonate

Acetazolamide inhibits the enzyme carbonic anhydrase, which catalyzes the rapid conversion of carbon dioxide to bicarbonate ions in many cells including nerve cells. Reducing the amount of bicarbonate ions helps control abnormal, paroxysmal (short frequent), excessive discharge (transmission of signal between nerve cells) from neurons that can cause convulsions such as in epilepsy.
...Read more

Transmission of nerve impulses

Messages are transmitted from one neurone (nerve cell) to another by the generation of electrical and chemical signals. At one end of the neurone, structures called dendrites pick up the stimulus from the connecting neurone and this generates an electrical signal that travels down the body of the cell called the axon and stimulates the release of chemical signals or neurotransmitters from the other end. These neurotransmitters travel across the gap or synapse between the axon terminal of one neurone (pre-synaptic) and the dendrites at the top of the next neurone (post-synaptic). They bind to specific receptors and trigger the generation of another electrical signal in the next neurone. This transmission of electrical and chemical messages takes just milliseconds to complete.

An electrical signal is generated by the exchange of charged particles or ions across voltage-dependant ion channels in the cell membrane controlled by ion pumps. When a neurone is not transmitting messages it is resting and its membrane is polarised which means that the electrical charge on the outside of the membrane is positive due to an excess of sodium ions, while the charge on the inside is negative and there is an excess of potassium ions.

When the neurone is stimulated, the gated channels on the membrane open and sodium ions flood into the cell and the membrane becomes depolarised generating an action potential and an electrical signal is propagated along the axon. The ions return to their original levels and the cell becomes repolarised, ready to receive another signal.

At the other end of the neurone, the electrical signal triggers the membrane to depolarise allowing calcium ions to enter the cell and this stimulates the release of neurotransmitters. Some neurotransmitters trigger an action potential in the next neurone and are is stimulatory, others are inhibitory and prevent the generation of an action potential.
Once it has done its job the neurotransmitter is degraded or reabsorbed back into the pre-synaptic neurone that released it, so that the stimulus stops once transmission to the next neurone is complete.

What is epilepsy?

Epilepsy is characterised by recurring spontaneous seizures, which is uncontrolled muscular spasm, due to episodes of abnormal electrical activity in the brain. A chemical imbalance of neurotransmitters in the brain results in a malfunction in the transmission of electrical signals and causes repetitive firing and transmission of excitatory nerve messages. These bursts of abnormal electrical activity in the brain send nerve signals to the motor neurones in the central nervous system and trigger seizures. Epileptic seizures vary from mild convulsions to violent muscle spasms with loss of consciousness, depending on the part of the brain affected. The trigger for epileptic seizures can be due to anything that disturbs normal activity of neurones, including head injury, stroke, brain tumour, brain infection, drug abuse, but in many cases the cause is unknown (idiopathic) and epilepsy can start at any age.

Medications for epilepsy

Drugs used to prevent epileptic seizures are anticonvulsants that control the bursts of electrical activity in the brain that cause seizures. They work by preventing the repetitive firing of nerve messages acting through different mechanisms, including:
  • Blocking sodium channels that are involved in triggering the action potential and setting up the nerve signal
  • Blocking calcium channels that respond to the nerve signal and trigger the release of neurotransmitters
  • Adjusting the balance between inhibitory and excitatory neurotransmitters
Some medications work by more that one mechanism and act by a combination of these mechanisms.

Sodium/calcium channel blockers

Some anticonvulsants control neurotransmission and act directly on nerve cells to stabilise nerve cell membranes by blocking sodium or calcium channels. This reduces electrical activity and helps to “calm down” nerves that have become hyperexcited, thereby inhibiting the repetitive firing and transmission of excitatory nerve messages, in areas of the brain where hyperactivity causes seizures. Medications that act as membrane stabilisers include the following:
  • Carbamazepine blocks voltage-dependent sodium channels in nerve cell membranes that control the flow of sodium ions into the nerve cell and triggers an electrical transmission, which in hyperexcited nerve cells can trigger a seizure. This action is also thought to suppress the release of the neurotransmitters dopamine and noradrenaline.

  • Phenytoin acts directly on a specific area in the brain called the motor cortex, which controls movement and works by promoting the release of sodium ions out of the nerve cell through voltage-gated sodium channels in the membrane. This prevents the spread of electrical activity that sends nerve signals from the brain to the central nervous system to trigger a seizure.

  • Topiramate blocks sodium channels and thereby reduces the neurone’s ability to send out continuous signals which cause seizures.

  • Gabapentin is an analogue of Gamma aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the brain and is thought to control neurotransmission via voltage-gated calcium channels.

  • Sodium valproate acts as a nerve cell membrane stabiliser by blocking voltage-dependent sodium channels.

Inhibitory and excitatory neurotransmitters

For the brain to function normally it is important to have a balance between excitatory and inhibitory neurotransmitters. Glutamate is the major excitatory neurotransmitter and interacts with receptors that have excitatory effects, which means that they increase the probability that the target cell will set up an action potential and trigger a nerve signal. Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter and interacts with receptors that have inhibitory effects by failing to trigger a nerve signal and this has a calming effect on nerve cells. Medications that regulate the balance between excitatory and inhibitory neurotransmitters include the following:
  • Sodium valproate increases the activity of the inhibitory neurotransmitter GABA. It works by inhibiting GABA degradative enzymes like GABA transaminase and/or succinic semialdehyde dehydrogenase thereby preventing its degradation; also by preventing the reuptake of GABA by the pre-synaptic nerve cell.

  • Topiramate stimulates the activity of GABA by enhancing the frequency that it activates its receptor; also by enhancing the ability of GABA to increase the flow of calcium ions into the end of the nerve cell that stimulates release of neurotransmitters. Topiramate also inhibits the activity of the excitatory neurotransmitter glutamate, which adds to the calming effect on brain electrical activity.

  • Gabapentin is an analogue of the inhibitory neurotransmitter GABA but does not work through the same receptors as GABA. It does however, bind to a receptor in brain neurones and is thought to control neurotransmission by blocking voltage-gated calcium channels, which reduces the propagation of excitatory nerve transmissions and calms excitatory nerve cells.

Bicarbonate

Acetazolamide inhibits the enzyme carbonic anhydrase, which catalyzes the rapid conversion of carbon dioxide to bicarbonate ions in many cells including nerve cells. Reducing the amount of bicarbonate ions helps control abnormal, paroxysmal (short frequent), excessive discharge (transmission of signal between nerve cells) from neurons that can cause convulsions such as in epilepsy.
...Read more

All medicines have risks and benefits, and individual results may vary. Only purchase medicines from this site in accordance with the advice you have obtained from an appropriate medical professional.
What is this ?
Please select your country to display all the products we are able to supply to you.
What is this ?
Select the currency that you would like to display the prices in. This will be the currency that appears on your credit card statement.
 

This website uses cookies. View our policy and select your preferences here